22 research outputs found

    Preparation of BiVO 4

    Get PDF
    We prepared BiVO4-graphene nanocomposites by using a facile single-step method and characterized the material by x-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible diffuse-reflection spectroscopy, and three-dimensional fluorescence spectroscopy. The results show that graphene oxide in the catalyst was thoroughly reduced. The BiVO4 is densely dispersed on the graphene sheets, which facilitates the transport of electrons photogenerated in BiVO4, thereby leading to an efficient separation of photogenerated carriers in the coupled graphene-nanocomposite system. For degradation of rhodamine B dye under visible-light irradiation, the photocatalytic activity of the synthesized nanocomposites was over ∼20% faster than for pure BiVO4 catalyst. To study the contribution of electrons and holes in the degradation reaction, silver nitrate and potassium sodium tartrate were added to the BiVO4-graphene photocatalytic reaction system as electron-trapping agent and hole-trapping agent, respectively. The results show that holes play the main role in the degradation of rhodamine B

    Speculation on optimal numbers of examined lymph node for early-stage epithelial ovarian cancer from the perspective of stage migration

    Get PDF
    IntroductionIn early-stage epithelial ovarian cancer (EOC), how to perform lymphadenectomy to avoid stage migration and achieve reliable targeted excision has not been explored in depth. This study comprehensively considered the stage migration and survival to determine appropriate numbers of examined lymph node (ELN) for early-stage EOC and high-grade serous ovarian cancer (HGSOC).MethodsFrom the Surveillance, Epidemiology, and End Results database, we obtained 10372 EOC cases with stage T1M0 and ELN ≥ 2, including 2849 HGSOC cases. Generalized linear models with multivariable adjustment were used to analyze associations between ELN numbers and lymph node stage migration, survival and positive lymph node (PLN). LOESS regression characterized dynamic trends of above associations followed by Chow test to determine structural breakpoints of ELN numbers. Survival curves were plotted using Kaplan-Meier method.ResultsMore ELNs were associated with more node-positive diseases, more PLNs and better prognosis. ELN structural breakpoints were different in subgroups of early-stage EOC, which for node stage migration or PLN were more than those for improving outcomes. The meaning of ELN structural breakpoint varied with its location and the morphology of LOESS curve. To avoid stage migration, the optimal ELN for early-stage EOC was 29 and the minimal ELN for HGSOC was 24. For better survival, appropriate ELN number were 13 and 8 respectively. More ELNs explained better prognosis only at a certain range.DiscussionNeither too many nor too few numbers of ELN were ideal for early-stage EOC and HGSOC. Excision with appropriate numbers of lymph node draining the affected ovary may be more reasonable than traditional sentinel lymph node resection and systematic lymphadenectomy

    Preparation of BiVO4-Graphene Nanocomposites and Their Photocatalytic Activity

    Get PDF
    We prepared BiVO4-graphene nanocomposites by using a facile single-step method and characterized the material by x-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible diffuse-reflection spectroscopy, and three-dimensional fluorescence spectroscopy. The results show that graphene oxide in the catalyst was thoroughly reduced. The BiVO4 is densely dispersed on the graphene sheets, which facilitates the transport of electrons photogenerated in BiVO4, thereby leading to an efficient separation of photogenerated carriers in the coupled graphene-nanocomposite system. For degradation of rhodamine B dye under visible-light irradiation, the photocatalytic activity of the synthesized nanocomposites was over ∼20% faster than for pure BiVO4 catalyst. To study the contribution of electrons and holes in the degradation reaction, silver nitrate and potassium sodium tartrate were added to the BiVO4-graphene photocatalytic reaction system as electron-trapping agent and hole-trapping agent, respectively. The results show that holes play the main role in the degradation of rhodamine B

    Testing of precast recycled aggregate concrete shear wall with pressed sleeve connection subjected to cyclic loading

    No full text
    The pressed sleeve connection is a new type of connection technique reported in China recently. To explore the possibility of combining the advantages of pressed sleeve connections and recycled aggregate concrete (RAC) in precast concrete, the seismic performance of precast shear walls with pressed sleeves and recycled fine aggregate (RFA) concrete was investigated through a thorough experimental programme. A total of seven precast shear wall specimens and one cast-in-situ specimen were fabricated and tested under lateral cyclic loading, considering the effects of the aspect ratio, the axial compression ratio, and the RFA content. The failure modes, hysteretic behavior, bearing capacity, energy dissipation, stiffness and shear distortion of the specimens, as well as the strains of the steels, were reported and discussed. The test results demonstrated that the pressed sleeve connections were capable of transmitting both tensile and compressive forces between reinforcements, and the precast shear walls with pressed sleeve connections exhibited the same hysteresis behavior, strengths, ductility coefficient and energy dissipation capacity as the cast-in-situ counterpart. Moreover, the seismic behavior of the precast specimens with the RFA content of 30% was almost the same as those with natural aggregate concrete (NAC). The increase in the axial compression ratio and aspect ratio led to higher peak loads of the precast shear walls. Finally, existing design methods of ordinary reinforced concrete shear walls were evaluated for their application to the design of precast RFA concrete shear walls with pressed sleeves. Overall, the evaluation results revealed that the examined design methods offer generally accurate strength predictions for the proposed shear walls

    Evaluation of Atmospheric Pollutant Emission Efficiency Based on SBM-Undesirable Model —— Taking PM2.5 as an Example

    No full text
    At present, China's haze is becoming more and more serious. How to reduce haze emission is an urgent problem in China's environmental governance. This paper uses the SBM-Undesirable model, adopting 5 inputs indexes(coal, oil, gas, labor and capital), and 2 outputs indexes(GDP and PM2.5 emissions)as expected output and unexpected output respectively, to calculate the emission efficiency of PM2.5 in China's 29 provinces. Based on the efficiency evaluation results of SBM-Undesirable model, the reasons for the inefficiency of PM2.5 emission are analyzed. The redundancy rate of investment, the insufficient rate of expected output and the redundancy rate of undesirable outputs are calculated. Results showed that: (1) Most provinces with high PM2.5 emission efficiency are concentrated in the eastern region, while the PM2.5 emission efficiency in the central and western regions is relatively low. (2) The redundancy rate of input variables and undesirable output of the eastern region is lower than that of the western and based on SBM-Undesirable model central regions. This is likely to have a great relationship with the economic development and the high level of technology in the eastern region. This study provides a reference for reducing the haze theory and providing empirical support for the government's haze reduction

    Effects of Saline-Alkaline Stress on Metabolome, Biochemical Parameters, and Histopathology in the Kidney of Crucian Carp (Carassius auratus)

    No full text
    The salinization of the water environment caused by human activities and global warming has increased which has brought great survival challenges to aquatic animals. Crucian carp (Carassius auratus) is an essential freshwater economic fish with superior adaptability to saline-alkali water. However, the physiological regulation mechanism of crucian carp adapting to saline-alkali stress remains still unclear. In this study, crucian carp were exposed to freshwater or 20, 40, and 60 mmol/L NaHCO3 water environments for 30 days, the effects of saline-alkali stress on the kidney were evaluated by histopathology, biochemical assays and metabolomics analysis from renal function, antioxidant capacity and metabolites level. Our results showed different degrees of kidney damage at different exposure concentrations, which were characterized by glomerular atrophy and swelling, renal tubular degranulation, obstruction and degeneration, renal interstitial edema, renal cell proliferation and necrosis. Saline-alkali stress could change the levels of several physiological parameters with renal function and antioxidant capacity, including creatinine (CREA), urea nitrogen (BUN), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA). In addition, metabolomics analysis showed that differential metabolites (DMs) were involved in various metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, purine metabolism, glycerophospholipid metabolism, sphingolipid metabolism, glycolysis/gluconeogenesis and the TCA cycle. In general, our study revealed that saline-alkaline stress could cause significant changes in renal function and metabolic profiles, and induce severe damage in the crucian carp kidney through destroying the anti-oxidant system and energy homeostasis, inhibiting protein and amino acid catabolism, as well as disordering purine metabolism and lipid metabolism. This study could contribute to a deeper understanding the adverse effects of saline-alkali stress on crucian carp kidney and the regulatory mechanism in the crucian carp of saline-alkali adaptation at the metabolic level

    Effects of Saline-Alkaline Stress on Metabolome, Biochemical Parameters, and Histopathology in the Kidney of Crucian Carp (<i>Carassius auratus</i>)

    No full text
    The salinization of the water environment caused by human activities and global warming has increased which has brought great survival challenges to aquatic animals. Crucian carp (Carassius auratus) is an essential freshwater economic fish with superior adaptability to saline-alkali water. However, the physiological regulation mechanism of crucian carp adapting to saline-alkali stress remains still unclear. In this study, crucian carp were exposed to freshwater or 20, 40, and 60 mmol/L NaHCO3 water environments for 30 days, the effects of saline-alkali stress on the kidney were evaluated by histopathology, biochemical assays and metabolomics analysis from renal function, antioxidant capacity and metabolites level. Our results showed different degrees of kidney damage at different exposure concentrations, which were characterized by glomerular atrophy and swelling, renal tubular degranulation, obstruction and degeneration, renal interstitial edema, renal cell proliferation and necrosis. Saline-alkali stress could change the levels of several physiological parameters with renal function and antioxidant capacity, including creatinine (CREA), urea nitrogen (BUN), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA). In addition, metabolomics analysis showed that differential metabolites (DMs) were involved in various metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, purine metabolism, glycerophospholipid metabolism, sphingolipid metabolism, glycolysis/gluconeogenesis and the TCA cycle. In general, our study revealed that saline-alkaline stress could cause significant changes in renal function and metabolic profiles, and induce severe damage in the crucian carp kidney through destroying the anti-oxidant system and energy homeostasis, inhibiting protein and amino acid catabolism, as well as disordering purine metabolism and lipid metabolism. This study could contribute to a deeper understanding the adverse effects of saline-alkali stress on crucian carp kidney and the regulatory mechanism in the crucian carp of saline-alkali adaptation at the metabolic level
    corecore